
1

CIS 422/522

CIS 422/522 Fall 2011 1

CIS 422/522
Second Half Review

CIS 422/522 Fall 2011 2

View of SE in this Course

• The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
– “Intellectual control ” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties).

– Managerial control means we control
development resources (budget, schedule,
personnel).

2

CIS 422/522

CIS 422/522 Fall 2011 3

Real meaning of “control”

• What does “control” really mean?
• Can we really get everything under control

then run on autopilot?
• Rather, does control mean a continuous

feedback loop?
1. Define ideal
2. Make a step
3. Measure deviation from idea
4. Correct direction or redefine ideal and

go back to 2

CIS 422/522 Fall 2011 4

Achieving System Qualities Through
Software Architecture

3

CIS 422/522

CIS 422/522 Fall 2011 5

Fit in the Development Cycle

Software
Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Software
Architecture

“…The earliest artifact that enables the
priorities among competing concerns to be
analyzed, and it is the artifact that manifests the
concerns as system qualities.”

CIS 422/522 Fall 2011 6

Definition

“The software architecture of a program or computing system is
the structure or structures of the system, which comprise
software components, the externally visible properties of those
components, and the relationships among them.” - Bass,
Clements, Kazman

• Systems typically comprise more than one
architecture
– There is more than one useful decomposition into

components and relationships
– Each addresses different system properties or design goals

• It exists whether any thought goes into it or not!
– Decisions are necessarily made if only implicitly
– Issue is who makes them and when

• Many “architectural specifications” aren’t

4

CIS 422/522

CIS 422/522 Fall 2011 7

Examples: These are architectures
• An architecture comprises a set of

– Software components
– Component interfaces
– Relationships among them

• Examples

Structure Components Interfaces Relationships

Calls Structure Programs Program interface
and parameter
declarations.

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program
(process, thread,
task)

Scheduling and
synchronization
constraints

Runs-concurrently-
with, excludes,
precedes

CIS 422/522 Fall 2011 8

This is not

Control
Process

(CP)

Noise
Model

(MODN)

Reverb
Model

(MODR)

Prop Loss
Model

(MODP)

Typical (but uninformative) architectural diagram

• What is the nature of the components?

• What is the significance of the link?

• What is the significance of the layout?

5

CIS 422/522

CIS 422/522 Fall 2011 9

Effects of Architectural Decisions

• What kinds of system and development properties
are and are not affected by architecture?

• System run-time properties
– Performance, Security, Availability, Usability

• System static properties
– Modifiability, Portability, Reusability, Testability

• Production properties? (effects on project)
– Work Breakdown Structure, Scheduling, time to market

• Business/Organizational properties?
– Lifespan, Versioning, Interoperability

CIS 422/522 Fall 2011 10

Functionality, Architecture, and
Quality Attributes

• Functionality behavior and quality attributes
are orthogonal

• Achieving quality attributes must be
considered throughout design,
implementation, and deployment

• Satisfactory results depends on:
– Getting the big picture (architecture) right
– Then getting the details (implementation) right

6

CIS 422/522

CIS 422/522 Fall 2011 11

Example: Performance

• Ex: Performance depends on
– How much inter-component communication is

necessary (Arch)
– What functionality has been allocated to each

component (Arch)
– How shared resources are allocated (Arch)
– The choice of algorithms to implement functionality

(Non-arch)
– How algorithms are coded (Non-arch)

CIS 422/522 Fall 2011 12

Importance to Stakeholders

• Which stakeholders have a vested interest in the
architectural design?
– Management, marketing, end users
– Maintenance organization, IV&V, Customers
– Regulatory agencies (e.g., FAA)

• There are many interested parties (stakeholders) with
many diverse and often conflicting interests

• Important because their interests defy mutual
satisfaction
– There are inherently tradeoffs in most architectural choices
– E.g. Performance vs. security, initial cost vs. maintainability

• Making successful tradeoffs requires understanding
the nature, source and priority of quality requirements

7

CIS 422/522

CIS 422/522 Fall 2011 13

The Architectural Business Cycle

Business Goals
Hardware
Software
Marketing
other

Product Planning
Economic Evaluation
Development Strategy
Marketing Strategy
Prioritization

Requirements
Capabilities
Qualities
Reusability

Architecture
Tradeoffs of
quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints

CIS 422/522 Fall 2011 14

Engineering Software Architecture

• Goal is to keep developmental goals and
architectural capabilities in synch

• Proceed from an understanding of desired
qualities to an acceptable system design

• For full control, must also consider
downstream effects of architectural decisions
– Maintenance
– New versions of the system

8

CIS 422/522

CIS 422/522 Fall 2011 15

Implications for the Development
Process

Implies need to address architectural concerns in the
development process:
• Understand the goals for the system (e.g., business

case or mission)
• Understand/communicate the quality requirements
• Design architecture(s) that satisfy quality

requirements
– Choose appropriate architectural structures
– Design structures to satisfy qualities
– Document to communicate design decisions

• Evaluate/correct the architecture
• Implement the system based on the architecture

CIS 422/522 Fall 2011 16

Quality Requirements

9

CIS 422/522

CIS 422/522 Fall 2011 17

Terminology

• Avoid “functional” and non-functional" classification
• Behavioral Requirements – any information

necessary to determine if the run-time behavior of a
given implementation constitutes an acceptable
system
– All quantitative constraints on the system's run-time behavior

safety, performance, fault-tolerance)
– In theory all can be validated by observing the running

system and measuring the results

• Developmental Quality Attributes - any constraints
on the system's static construction
– Maintainability, reusability, ease of change (mutability)
– Measures of these qualities are necessarily relativistic (I.e.,

in comparison to something else

CIS 422/522 Fall 2011 18

Behavioral vs. Developmental

Behavioral (observable)
• Performance
• Security
• Availability
• Reliability
• Usability

Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.

Developmental Qualities
• Modifiability(ease of change)
• Portability
• Reusability
• Ease of integration
• Understandability
• Independent work

assignments

Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.

10

CIS 422/522

CIS 422/522 Fall 2011 19

Specifying Quality Requirements

• Write objectively verifiable requirements when
possible
– Maintainability: “The following kinds of

requirement changes will require changes in no
more than one module of the system…”

– Performance:
• “System output X has a deadline of 5 ms from the input

event.”
• “System output Y must be updated at a frequency of no

less than 20 ms.”

• Consider: what do we really mean by
“maintainable?”

CIS 422/522 Fall 2011 20

Designing Architectures

11

CIS 422/522

CIS 422/522 Fall 2011 21

Which structures should we use?

• Choice of structure depends the specific
design goals

• Compare to architectural blueprints
• Different blueprint for load-bearing structures, electrical,

mechanical, plumbing

Structure Components Interfaces Relationships

Calls Structure Programs
(methods,
services)

Program interface and
parameter declarations

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program (process,
thread, task)

Scheduling and
synchronization
constraints

Runs-concurrently-with,
excludes, precedes

CIS 422/522 Fall 2011 22

Elevation/Structural

12

CIS 422/522

CIS 422/522 Fall 2011 23

Models/Views

• Each is a view of the same house
• Different views answer different kinds of questions

– How many electrical outlets are available in the kitchen?
– What happens if we put a window here?

• Designing for particular software qualities also
requires the right architectural model or “view”
– Any model can present only a subset of system structures

and properties
– Different models allows us to answer different kinds of

questions about system properties
– Need a model that makes the properties of interest and the

consequences of design choices visible to the designer, e.g.
• Process structure for run-time property like performance
• Module structure for development property like maintainability

CIS 422/522 Fall 2011 24

Design Means…

• Design Goals: the purpose of design is to solve
some problem in a context of assumptions and
constraints
– Assumptions: what must be true of the design
– Constraints: what should not be true
– These define the design goals

• Process: design proceeds through a sequence of
decisions
– A good decision brings us closer to the design goals
– An idealized design process systematically makes

good decisions
– Any real design process is chaotic

• Good Design: by definition a good design is one
that satisfies the design goal

13

CIS 422/522

CIS 422/522 Fall 2011 25

The Design Space

• A Design: is (a representation of) a
solution to a problem
– Represents a set of choices

• Typically very large set of possible
choices

• Must navigate through possibilities
• Invariably requires tradeoffs

– Possible choices are limited by
assumptions and constraints

• e.g., must be ISO 2000 compliant,
legacy compatible, etc.

– Some designs are better than
others (notion of good design)

Problem
Space

Possible
Solutions “Good”

solutions
(designs)

Our
designx x x

x x x

Design
Constrains

CIS 422/522 Fall 2011 26

Architectural Design Elements

• Design goals
– What are we trying to accomplish in the

decomposition?
• Relevant Structure

– How to we capture and communicate design
decisions?

– What are the components, relations, interfaces?
• Decomposition principles

– How do we distinguish good design decisions?
– What decomposition (design) principles support the

objectives?
• Evaluation criteria

– How do I tell a good design from a bad one?

14

CIS 422/522

CIS 422/522 Fall 2011 27

Navigating the Design Space

• Design principles, heuristics, and methods
assist the designer in navigating the design
space
– Design is a sequence of decisions
– Methods help tell us what kinds of decisions

should be made
– Principles and heuristics help tell us:

• The bets order in which to make decisions

• Which of the available choices will lead to the design
goals

CIS 422/522 Fall 2011 28

Example:
Designing the Module Structure

15

CIS 422/522

CIS 422/522 Fall 2011 29

Modularization

• For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”

• Properties of a “good” module structure
– Parts can be designed, understood, or

implemented independently
– Parts can be tested independently
– Parts can be changed independently
– Integration goes smoothly

CIS 422/522 Fall 2011 30

What is a module?

• Concept due to David Parnas (conceptual basis for
objects)

• A module is characterized by two things:
– Its interface: services that the module provides to other parts

of the systems
– Its secrets: what the module hides (encapsulates).

Design/implementation decisions that other parts of the
system should not depend on

• Modules are abstract, design-time entities
– Modules are “black boxes” – specifies the visible properties

but not the implementation
– May or may not directly correspond to programming

components like classes/objects
• E.g., one module may be implemented by several objects

16

CIS 422/522

CIS 422/522 Fall 2011 31

A Simple Module

• A simple integer stack
• The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.

– push: push integer on stack top
– pop: remove top element
– peek: get value of top element

• The secrets (encapsulated) any
details that might change from one
implementation to another

– Data structures, algorithms
– Details of class/object structure

• A module spec is abstract:
describes the services provided but
allows many possible
implementations

• Note: a real spec needs much more
than this (discuss later)

stack

peek(int)

push(int)

pop()

CIS 422/522 Fall 2011 32

Module Hierarchy

• For large systems, the set of modules need to be
organized such that
– We can check that all of the functional requirements

have been allocated to some module of the system
– Developers can easily find the module that provides

any given capability
– When a change is required, it is easy to determine

which modules must be changed

• The module hierarchy defined by the submodule-
of relation provides this architectural view

17

CIS 422/522

CIS 422/522 Fall 2011 33

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

CIS 422/522 Fall 2011 34

Decomposition Approach

18

CIS 422/522

CIS 422/522 Fall 2011 35

Modular Structure
• Comprises components, relations, and interfaces
• Components

– Called modules

– Leaf modules are work assignments

– Non-leaf modules are the union of their submodules

• Relations (connectors)
– submodule-of => implements-secrets-of

– The union of all submodules of a non-terminal module must
implement all of the parent module’s secrets

– Constrained to be acyclic tree (hierarchy)

• Interfaces (externally visible component behavior)
– Defined in terms of access procedures (services or method)

– Only external (exported) access to internal state

CIS 422/522 Fall 2011 36

Decomposition Strategies Differ

• How do we develop this structure so that we
know the leaf modules make independent work
assignments?

• Many ways to decompose hierarchically
– Functional: each module is a function
– Steps in processing: each module is a step in a chain

of processing
– Data: data transforming components
– Client/server
– Use-case driven development

• But, these result in different kinds of
dependencies (strong coupling)

19

CIS 422/522

CIS 422/522 Fall 2011 37

Submodule-of Relation

• To define the structure, need the relation and the
rule for constructing the relation

• Relation: sub-module-of
• Rules

– If a module consists of parts that can change
independently, then decompose it into submodules

– Don’t stop until each module contains only things likely
to change together

– Anything that other modules should not depend on
become secrets of the module (e.g., implementation
details)

– If the module has an interface, only things not likely to
change can be part of the interface

CIS 422/522 Fall 2011 38

Applied Information Hiding

• The rule we just described is calls the information
hiding principle

• Information hiding : Design principle of limiting
dependencies between components by hiding
information other components should not depend
on

• An information hiding decomposition is one
following where:
– System details that are likely to change independently

are encapsulated in different modules
– The interface of a module reveals only those aspects

considered unlikely to change

20

CIS 422/522

CIS 422/522 Fall 2011 39

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Given a set of likely
changes C1, C2, … Cn
and following these
rules, what happens:
• To each change?
• To things that

change together?
• Change separately?

CIS 422/522 Fall 2011 40

Method of Communication
Module Guide

– Documents the module structure:
• The set of modules
• The responsibility of each module in terms of the

module’s secret
• The “submodule-of relationship”
• The rationale for design decisions

– Document purpose(s)
• Guide for finding the module responsible for some aspect

of the system behavior
• Baseline design document
• Provides a record of design decisions (rationale)

21

CIS 422/522

CIS 422/522 Fall 2011 41

Evaluation Criteria

• Evaluation criteria follow from goals of the model: should
be able to answer “yes” to the following review questions?

• Completeness
– Is every aspect of the system the responsibility of one module?
– Do the submodules of each module partition its secrets?

• Ease change
– Is each likely change hidden by some module?
– Are only aspects of the system that are very unlikely to change

embedded in the module structure?
– For each leaf module, are the module’s secrets revealed by it’s

access programs?
• Usability

– For any given change, can the appropriate module be found
using the module guide

CIS 422/522 Fall 2011 42

Information Hiding Decomposition

• Approach: divide the system into submodules according to the
kinds of design decisions they encapsulate (secrets)
– Design decisions that are closely related (likely to change together ,

high cohesion) are grouped in the same submodule
– Design decisions that are weakly related (likely to change

independently) are allocated to different modules
– Characterize each module by its secrets (what it hides)

• Viewed top down, each module is decomposed into
submodules such that
– Each design decision allocated to the parent module is allocated to

exactly one child module
– Together the children implement all of the decisions of the parent

• Stop decomposing when each module is
– Simple enough to be understood fully
– Small enough that it makes sense to throw it away rather than re-do

• This is called an information-hiding decomposition

22

CIS 422/522

CIS 422/522 Fall 2011 43

Specifying Abstract Interfaces

CIS 422/522 Fall 2011 44

Method of Communication
Module Interface Specifications

– Documents all assumptions user’s can make about the
module’s externally visible behavior (of leaf modules)

• Access programs, events, types, undesired events
• Design issues, assumptions

– Document purpose(s)
• Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)

• Specify required behavior by fully specifying behavior of the
module’s access programs

• Define any constraints
• Define any assumptions
• Record design decisions

23

CIS 422/522

CIS 422/522 Fall 2011 45

Need for Precise Interface Specifications

• But, informal description is not enough to
write the software

• To support independent development, need a
precise interface specification

CIS 422/522 Fall 2011 46

Why these properties?

Module Implementer
• The specification tells me

exactly what capabilities my
module must provide to users

• I am free to implement it any
way I want to

• I am free to change the
implementation if needed as
long as I don’t change the
interface

Module User
• The specification tells me how

to use the module’s services
correctly

• I do not need to know anything
about the implementation
details to write my code

• If the implementation changes,
my code stays the same

Key idea: the abstract interface specification defines
a contract between a module’s developer and its use rs

that allows each to proceed independently

24

CIS 422/522

CIS 422/522 Fall 2011 47

What is an abstract interface?

• An abstract interface defines the set of
assumptions that one module can make about
another

• While detailed, an abstract interface specification
does not describe the implementation
– Does not specify algorithms, private data, or data

structures
– Preserves the module’s secrets

• One-to-many: one abstract module specification
allows many possible implementations
– Developer is free to use any implementation that is

consistent with the interface
– Developer is free to change the implementation

CIS 422/522 Fall 2011 48

A method for constructing abstract
interfaces

• Define services provided and services needed
(assumptions)

• Decide on syntax and semantics for accessing
services

• In parallel
– Define access method effects
– Define terms and local data types
– Define states of the module
– Record design decisions
– Record implementation notes

• Define test cases and use them to verify access
methods

25

CIS 422/522

CIS 422/522 Fall 2011 49

Interface Design

Considerations in interface design
Design principles
Role of information hiding and abstraction

CIS 422/522 Fall 2011 50

Module Interface Design Goals

General goals addressed by module interface design
1.Control dependencies

– Encapsulate anything other modules should not depend on
– Hide design decisions and requirements that might change

(data structures, algorithms, assumptions)

2.Provide services
– Provide all the capabilities needed by the module’s users
– Provide only what is needed (complexity)
– Provide problem appropriate abstraction (useful services and

states)
– Provide reusable abstractions

•Specific goals need to be captured (e.g., in the module
guide and interface design documents)

26

CIS 422/522

CIS 422/522 Fall 2011 51

1. Controlling Dependencies

• Addressed using the principle of information hiding
• IH: design principle of limiting dependencies between

components by hiding information other components
should not depend on

• When thinking about what to put on the interface
– Design the module interface to reveal only those design

decisions considered unlikely to change
– Required functionality allocated to the module and

considered likely to change must be encapsulated
– Each data structure is used in only one module
– Any other program must access internal data by calling

access programs on the interface

• Consistent with good OOD principles

CIS 422/522 Fall 2011 52

2. Provide Services

• Interface provides the capabilities of the
module to other modules in the system,
addressed by:

• Abstraction: interface design principle of
providing only essential information and
suppressing unnecessary detail

27

CIS 422/522

CIS 422/522 Fall 2011 53

Abstraction

• Two primary uses
• Reduce Complexity

– Goal: manage complexity by reducing the amount of
information that must be considered at one time

– Approach: Separate information important to the problem at
hand from that which is not

– Abstraction suppresses or hides “irrelevant detail”
– Examples: stacks, queues, abstract device

• Model the problem domain
– Goal: leverage domain knowledge to simplify understanding,

creating, checking designs
– Approach: Provide components that make it easier to model

a class of problems
• May be quite general (e.g., type real, type float)
• May be very problem specific (e.g., class automobile, book object)

CIS 422/522 Fall 2011 54

Example: Car Object

• What are the abstractions?
– Purpose of each?

• What information is hidden?

28

CIS 422/522

CIS 422/522 Fall 2011 55

Which Principle to Use

• Use abstraction when the issue is what
should be on the interface (form and content)

• Use information hiding when the issue is what
information should not be on the interface
(visible or accessible)

CIS 422/522 Fall 2011 56

Quality Assurance

The role of testing*
Active reviews

*From Prof. Michal Young

29

CIS 422/522

CIS 422/522 Fall 2011 57

Why Test

• Stupid question?
• But we need to be clear about goals before we can make

reasoned choices regarding the other questions, who,
what, when, and how

• In general: testing provides the feedback in our
“feedback control loop”

• We test to avoid costs
– Costs during software development
– Cost of defects in the final product

CIS 422/522 Fall 2011 58

Errors, Detection, and Repairs

• Basic observation:
– Cost of a defect grows quickly with time between

making an error and fixing it
• Step function as defects cross scope walls: From

programmer to sub-team, from close colleagues to larger
team, from module to system, from developers to
independent testers and from development to production

• “Early” errors are the most costly
• Misunderstanding of requirements, architecture that does

not support a needed change, ...

30

CIS 422/522

CIS 422/522 Fall 2011 59

When

• As early as possible
– Reduce the gap between making an error and

fixing it
• Ideally to “immediately” ... which we call “prevention” or

“syntactic checking”

• E.g., error detection/correction in Eclipse, other
programming environments

• Throughout development
– People make mistakes in every activity, so every

work product must be tested as soon as possible

CIS 422/522 Fall 2011 60

Choosing What

• For every work product, we ask: How can I
find defects as early as possible
– Ex: How can I find defects in software architecture

before we’ve designed all the modules? How can
I find defects in my module code before it’s
integrated into the system?

• Divide and conquer
– What properties can be checked automatically?
– What properties can be (effectively) tested

dynamically?
– How can I make reviews cost-effective?

31

CIS 422/522

CIS 422/522 Fall 2011 61

Verification and Validation:
Divide and Conquer

• Validation vs. Verification
– Are we building the right product? vs. Are we

building it right?
– Crossing from judgment to precise, checkable

correctness property. Verification is at least partly
automatable, validation is not

• Correctness is a relation between spec and
implementation
– To make a property verifiable (testable, checkable,

...) we must capture the property in a spec

CIS 422/522 Fall 2011 62

How (from why, who, when, what)

• Black box: Test design is part of designing
good specifications

• This will change specs, in a good way. Factoring
validation from verification is particularly hard, but
particularly cost-effective as it leverages and focuses
expensive human judgment

• White (or glass) box: Test design from
program design

• Executing every statement or branch does not guarantee
good tests, but omitting a statement is a bad smell.

32

CIS 422/522

CIS 422/522 Fall 2011 63

Active Reviews

CIS 422/522 Fall 2011 64

Peer Reviews

• Peer Review: a process by which a software product
is examined by peers of the product’s authors with
the goal of finding defects

• Why do we do peer reviews?
– Review is often the only available verification method before

code exists
– Formal peer reviews (inspections) instill some discipline in

the review process
• Particularly important for distributed teams

– Supports communication and visibility
– Provides feedback on both quality and understanding

• i.e., makes the communication effectiveness and level of
understanding visible

– A good review shows communication is working!

33

CIS 422/522

CIS 422/522 Fall 2011 65

Peer Review Problems

• Tendency for reviews to be incomplete and
shallow

• Reviewers typically swamped with information,
much of it irrelevant to the review purpose

• Reviewers lack clear individual responsibility
• Effectiveness depends on reviewers to initiate

actions
– Review process requires reviewers to speak out
– Keeping quiet gives lowest personal risk
– Rewards of finding errors are unclear at best

CIS 422/522 Fall 2011 66

Active Reviews

• Goal: Make the reviewer(s) think hard about what they
are reviewing

1) Identify several types of review each targeting a
different type of error (e.g., UI behavior, consistency
between safety assertions and functions).

2) Identify appropriate classes of reviewers for each type
of review (specialists, potential users, methodology
experts)

3) Assign reviews to achieve coverage: each applicable
type of review is applied to each part of the
specification

34

CIS 422/522

CIS 422/522 Fall 2011 67

Active Reviews (2)

4) Design review questionnaires (key difference)
– Define questions that the review must answer by using the

specification
– Target questions to bring out key issues
– Phrase questions to require “active” answers (not just “yes”)

5) Review consists of filling out questionnaires defining
– Section to be reviewed
– Properties the review should check
– Questions the reviewer must answer

6) Review process: overview, review, meet
– One-on-one or small, similar group
– Focus on discussion of issues identified in review
– Purpose of discussion is understanding of the issue (not

necessarily agreement)

CIS 422/522 Fall 2011 68

Conventional vs. Active Questions

Conventional Design Review Questions Active Design Review Questions*

Are exceptions defined for every program? For each access program in the module, what
exceptions that can occur?

Are the right exceptions defined for every
program?

What is the the range or set of legal values?

Are the data types defined? For each data type, what are • an expression for
a literal value of that data type; • a declaration
statement to declare a variable for that type; •
the greatest and least values in the range of
that data type?

Are the programs sufficient? Write a short pseudo-code program that uses
the design to accomplish {some defined task}.

• Goal: Make the reviewer(s) think hard about what th ey are reviewing*
• Define questions that the review must answer by usi ng the specification
• Target questions to bring out key issues
• Phrase questions to require “active” answers (not ju st “yes”)

35

CIS 422/522

CIS 422/522 Fall 2011 69

Why Active Reviews Work

• Focuses reviewer’s skills and energies where they
have skills and where those skills are needed
– Questionnaire allows reviewers to concentrate on one

concern at a time
– No one wastes time on parts of the document where there is

little possibility of return.
• Largest part of review process (filling out

questionnaires) is conducted independently and in
parallel

• Reviewers must participate actively but need not risk
speaking out in large meetings

• Downside: much more work for V&V (but can be
productively pursued in parallel with document
creation)

CIS 422/522 Fall 2011 70

Real meaning of “control”

• What does “control” really mean?
• Can we really get everything under control

then run on autopilot?
• Rather, does control mean a continuous

feedback loop?
1. Define ideal
2. Make a step
3. Measure deviation from idea
4. Correct direction or redefine ideal and

go back to 2

36

CIS 422/522

CIS 422/522 Fall 2011 71

Questions?

CIS 422/522 Fall 2011 72

Schedule

• Thursday (Final Presentations)
– Meet in Colloquium Room, Deschutes
– 20 minutes per team

• Project overview

• Demo

• Lessons learned

• Final:
– Alternate date: Tuesday, Dec. 6th, 12:00, Room

200, Deschutes
– Scheduled Fri., Dec, 9th, 8:00

37

CIS 422/522

CIS 422/522 Fall 2011 73

Introduction to
Distributed Software Development

CIS 423/510

Prof. Stuart Faulk
CIS

University of Oregon

Prof. Lian Yu
School of Software and

Microelectronics
Peking University

分布式软件开发导论

CIS 422/522 Fall 2011 74

CIS 423

• CIS 423: Globally Distributed Software
Development

• Increasingly companies develop software
using globally distributed teams
– Different countries, languages, time zones,

cultures

• Introduces interesting Software Engineering
challenges
– Coordinating the work
– Communicating effectively

38

CIS 422/522

CIS 422/522 Fall 2011 75

Course Structure

• Gain real experience with problems by simulating
an industrial DSD project
– Similar to way in-class project simulates co-located

development

• Collaborate with students at Peking University on
a software project
– Each team will be roughly half UO, half PKU
– Collaborate over the web to create, review, and

present the results of development

• Learn to apply SE principles, methods and tools
to support long-distance collaboration

CIS 422/522 Fall 2011 76

Remote Collaboration

• Offered Spring 2012
• Let me know if you have

questions

